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Universality and self-similarity of an energy-constrained sandpile model with random neighbors
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We study an energy-constrained sandpile model with random neighbors. The critical behavior of the model
is in the same universality class as the mean-field self-organized criticality sandpile. The critical energyEc

depends on the number of neighborsn for each site, but the various exponents are independent ofn. A
self-similar structure withn21 major peaks is developed for the energy distributionp(E) when the system
approaches its stationary state. The avalanche dynamics contributes to the major peaks appearing atEpk

52k/(2n21) with k51,2, . . . ,n21, while the fine self-similar structure is a natural result of the way the
system is disturbed.@S1063-651X~99!10307-6#

PACS number~s!: 05.65.1b, 05.40.2a, 05.70.Ln, 45.05.1x
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I. INTRODUCTION

According to the original work of Baket al. on self-
organized criticality @1#, driven dissipative systems wit
many coupled degrees of freedom would evolve sponta
ously into a critical state without fine tuning any contr
parameter. The critical state of such a system is character
by scale-free distributions of dynamical activities. Baket al.
demonstrated their idea with a cellular automaton model,
Bak-Tang-Wiesenfeld~BTW! sandpile model, which later on
drew much attention from physicists. Several variatio
@2–4# of the BTW model and some other models, such as
forest-fire model@5#, the spring-block model@6#, the Bak-
Sneppen model@7#, etc., were proposed and were shown
display self-organized criticality~SOC! behaviors. There
have also been many efforts@8,9# to identify the mechanism
that leads to scale-free distributions in SOC models.
sandpile models, scale invariance can be shown to fol
from a local conservation law@10#, while in the nonconser-
vative stick-slip model@6# the synchronization of system e
ements plays an important role@9#. As yet there seems to b
no unified picture for the appearance of SOC behavior.

To many physicists, the idea of a critical point witho
fine tuning of external parameters is very appealing beca
it opposes the standard picture of the equilibrium criti
phenomenon. Recently, several authors@11,12# argued that
in SOC systems the driving rate actually acts as the con
parameter that has to be fine-tuned to zero to observe c
cality. For instance, the SOC models usually involve a se
ration of time scales, namely, the slow time scale of driv
and the fast~instant! time scale of relaxation~avalanche!. So
SOC models are actually defined at the driving rate of ze
To shed more light on the properties of SOC models, a sa
pile model with constrained total energy was proposed@13#.
The energy-constrained~EC! sandpile model differs from the
SOC sandpile model in the following way. In the SOC mod
there are both input of energy into the system and dissipa
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of energy from the boundary. When the stationary state
the system is reached, the input and the dissipation bala
each other statistically, nevertheless there is still fluctuat
of the total energy. In the EC model, however, there is n
ther input nor dissipation of system energy, and the dyna
ics just redistributes energy among system elements. So
total energy is fixed and thus is a control parameter. Num
cal studies of the EC sandpile revealed that the model ex
its power-law distribution of avalanche sizes at the critic
energyEc5(0.649260.0002)Eth @13#, with the same expo-
nents as that of the corresponding SOC sandpile. The sca
with the distance to the critical point, however, is differe
from that of the SOC model. For the EC sandpile,^s&
;(Ec2Ē)2g with g51.4160.03, while for the SOC sand
pile g51. The authors of Ref.@13# concluded that the EC
sandpile and the corresponding SOC sandpile were in dif
ent universality classes. This result, as stated in Ref.@13#,
appears somewhat puzzling. A natural question to ask is,
EC models necessarily in different universality classes fr
their corresponding SOC models?

II. RANDOM NEIGHBOR EC SANDPILE MODEL

In this paper, we will study a continuous-energy sandp
model with random neighbors~RN! and constrained tota
energy. A continuous-energy SOC model defined on a squ
lattice with stochastic driving was first introduced in Re
@14#, and the critical energy was measured to beEc5(0.62
60.01)Eth . Here we consider a system with a total numb
N of sites. To each of them a continuous non-negative v
able, sayenergy, is associated. If the energyEi of site i is
less than some threshold valueEth , the sitei is said to be
stable. By properly choosing units, we can setEth51. If Ei
>1, the site is unstable and will release all its energy. T
energyEi of this unstable site will be evenly divided inton
portions, where the integern.1 will be referred to as the
number of neighbors for each site. These portions of ene
will be at first temporally put into an energy ‘‘buffer,’’ and
then will be given back to system sites one by one. Ea
portion of energy will be given to a randomly chosen si
259 ©1999 The American Physical Society
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260 PRE 60SHU-DONG ZHANG
say sitej, from the system. So the energy of sitej becomes
Ej→Ej1Ei /n. If site j also becomes unstable by receiving
portion of energy, it will also release all its energyEj which
in turn will be divided and put into the buffer. The energ
portions in the buffer follow a ‘‘first in first out’’ rule, and
the process continues until the energy buffer becomes em
The successive energy releasing of unstable sites wil
called anavalanche, and the sizes of an avalanche is define
as the total number of releasing sites during the avalanch
this model, system sites are randomly chosen to receive
ergy portions from the buffer, and it is in this sense that
model is called a random-neighbor model.

When an avalanche has stopped, the system beco
stable; we disturb the system by randomly choosing a s
dividing its energy evenly inton portions and putting the
energy portions into the buffer. Note that the way we distu
the system is different from the ways employed in Ref.@13#,
namely, the random subtraction~RS! and the continuous sub
traction ~CS!. We will see later that the disturbance we em
ployed here will generate a self-similar structure in the
ergy distribution.

In the present model, the avalanche dynamics and
disturbance both conserve the total energy of the system
the total energy never changes, and it is in this sense
model is energy-constrained. We will useNĒ to denote the
total energy of the system, so the average energy per si
Ē. For brevity we just callĒ the system energy. We wil
study the critical behavior of the model as the value ofĒ is
continuously tuned.

III. DETERMINATION OF THE CRITICAL ENERGY

The critical energyEc is the system energy at which th
system has a scale-free distribution of avalanche sizes
other words, at the critical energy there is no characteri
avalanche size, and the size distribution is expected to
power law. Let us define the quantitye5Ec2Ē as the dis-
tance from the critical point. At the critical pointe50 one
has a pure power-law distributionP(s);s2t. Near the criti-
cal point, a cutoff size,sc;e21/s, is expected to be presen
due to the departure from the critical point. In numeric
simulations, one can only study systems of finite sizeN. Due
to the finite-size effect, one expects a saturation ofsc when
e→0, in the formsc;e21/s f (e/N2r), and finally one has
the following form of avalanche distribution:

P~s,e,N!5s2tGS s

e21/s f ~e/N2r!
D . ~1!

Here two scaling functionsG(x) and f (x) are introduced.
G(x) is a constant forx,1 and drops down rapidly forx
.1; f (x) is a constant for large enoughx, and follows a
power lawf (x);x1/s for x!1. In the following sections we
will verify Eq. ~1! with numerical results from different as
pects, and will determine the exponentst, s, andr.

We determine the critical energyEc by identifying a good
power-law behavior of̂s& with N. In Fig. 1, we shoŵ s& as
a function ofN for different values ofĒ. WhenĒ is small,
^s& increases withN slower than a power law and eventual
it saturates to some constant. For largeĒ, ^s& increases with
ty.
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N faster than a power law and will never saturate. There
value Ec at which ^s& has a very good power-law depen
dence onN, ^s&;Ndf , and this is just the critical energy o
the system. By the procedure described above, we get
Ec50.428660.0001 anddf50.5060.01 forn54. Note that
this critical energy is different from that of the EC sandp
defined on a square lattice, whereEc5(0.649260.0002)Eth
@13#. For n56, we getEc50.454560.0001 anddf50.50
60.01. The numerical results suggest that the critical ene
is dependent onn, but the exponentdf is independent ofn.

IV. AVALANCHE-SIZE DISTRIBUTION
AT THE CRITICAL POINT

As expected from the above discussions, the avalanc
size distribution follows a power law at the critical energ
Ec . For finiteN the numerical results can be well describ
by the following form:

P~s,N!5s2tG~s/ND!. ~2!

The scaling functionG(x) is a constant whenx,1 and
drops rapidly forx.1. In fact, Eq.~2! can be obtained from
Eq. ~1! by taking the limite→0 with D5r/s.

In Fig. 2, we show the avalanche-size distribution at
critical energy. By a data-collapse technique, we determi

FIG. 1. Average size of avalanches for different system ene

Ē. The curves~from top to bottom! are for Ē50.43,0.4286,0.425,

and 0.42, respectively. Note that the curve forĒ50.4286 can be
fitted to a power laŵ s&;Ndf very well with df50.5060.01.

FIG. 2. ~a! Avalanche size distribution forn54 at the critical

point Ē50.4286. The curves~from right to left! are for N
510 000,3000, and 1000, respectively. The statistics were m
over 108 avalanches.~b! A data collapse according to Eq.~2!, with
the exponentst51.5 andD51.
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PRE 60 261UNIVERSALITY AND SELF-SIMILARITY OF A N . . .
the exponentst51.5060.02 andD51.060.1. One can also
get a scaling relation betweent, D, anddf by

^s&~N!5E sP~s,N!ds;E s12tG~s/ND!ds}ND(22t).

~3!

So one has thatdf5D(22t). The numerical results forD,
t, anddf agree well with this scaling relation. Again we fin
that exponentsD, t, anddf for n56 are the same as forn
54 within numerical errors.

The avalanche exponentt here is the same as the mea
field result for various SOC models@12,15#. In the present
model, the avalanche can be actually mapped to a ran
walk problem@15# or to a branching process@16#. In both
cases, the corresponding exponent can be shown to be
At the critical point, the branching rate is equal to unity. F
the present model, the branching rate can be calculated

r b5nE
12^E1&/n

1

p~E!dE, ~4!

wherep(E) is the energy distribution function and^E1& is
the average releasing energy of unstable sites. We have m
some calculations onr b . At the critical energyEc , we did
get thatr b51 within numerical errors. This verifies that th
critical energy was consistently determined.

V. SCALING WITH THE DISTANCE
TO THE CRITICAL POINT

To see if the EC model is in the same universality class
its SOC counterpart, one needs to investigate the sca
with the distance to the critical point. Calculating the avera
size of avalanches by using Eq.~1!, one gets the following
scaling form:

^s&;e2gFS e

N2rD , ~5!

with g5(22t)/s and F(x)5 f 22t(x), which is the (2
2t)th power of f (x). F(x) follows a power lawF(x);xg

for x!1 and becomes constant forx@1. In Fig. 3 we show
^s& as a function ofe5Ec2E for different N. A very good
data collapse according to Eq.~5! is also obtained. The ex

FIG. 3. ~a! Average size of avalanches scales withe5Ec2Ē for
different N. The curves ~from top to bottom! are for N
530 000,10 000,3000, and 1000, respectively.~b! Data collapse ac-
cording to Eq.~5!, with the exponentsg51 andr50.5. The dashed
line shows a curvey}xg for reference.
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ponents extracted from the data collapse areg51.0 andr
50.5. So one hass5(22t)/g50.5. Note that the relation
D5r/s is consistently satisfied by the numerical results.

One can also get that^s&}Nrg by taking the limite→0 in
Eq. ~5!, and get the relationdf5rg. The numerical results
also agree well with this relation. Also note that the exp
nentsg and r for n56 are the same as that forn54 al-
though the critical energies are different for the two case

So, for the EC RN sandpile model, not only the avalanc
exponentt51.5 but also the scaling exponentg51 is the
same as that of the mean-field SOC model. This situatio
different from the case studied in Ref.@13#, where the expo-
nent g for the EC model is different from that of the SO
model.

FIG. 4. The energy distribution for the casen54, Ē50.4286.
The statistics were made over 106 avalanches and the bin size is s
to be 1024. To see the self-similar structure, parts of the figure w
enlarged successively,~a!→~b!→~c!→~d!.

FIG. 5. The releasing energy distribution for the casen54, Ē
50.4286. The statistics were made over 83107 unstable releasing
events and the bin size is set to be 531024. The pronounced peak
in the figure is atEm

151.1425. The inset is the same curve replott
with D(E1) in logarithmic scale, which shows that the range ofE1

does not exceed the upper boundn/(n21)54/3'1.33.
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TABLE I. The most probable releasing energyEm
1 and the positions of the major peaksEpk

’s in the
energy distributionp(E). For eachn the first line gives the numerical results, while the numbers in pa
theses are calculated byEm

152n/(2n21) andEpk
5kEm

1/n52k/(2n21) with integerk51,2,3, . . . ,n21.

n Em
1 Ep1

Ep2
Ep3

Ep4
Ep5

4 1.14360.001 0.28560.001 0.57160.001 0.8660.01 No No
(1.142857) (0.285714) (0.571429) (0.857143) No No

5 1.1160.01 0.2260.01 0.4460.01 0.6760.01 0.8960.01 No
(1.111111) (0.222222) (0.444444) (0.666667) (0.888889) No

6 1.09060.001 0.18160.001 0.36360.001 0.54560.001 0.72760.001 0.9160.01
(1.090909) (0.181818) (0.363636) (0.545455) (0.727273) (0.90909
he

on

va
ol
d

nc
i

uc

th
th
y
s
s
s

i

,
uc

t
te

-
g
r
,
is
s

o

self-
-
.
er,
in

n

al-

the

m

ion
is

rve
f
e-
as

els.
ys-
en-
-

he
he

ce
te
VI. ENERGY DISTRIBUTION AT THE CRITICAL POINT

In this section we study the energy distribution of t
system in its critical stationary state. Letp(E)dE be the
probability that a site has energy in the interval@E,E1dE#.
In numerical simulations, we start from random energy c
figurations with a uniform distributionp(E)51/(2Ē), 0
,E,2Ē, and let the system evolve according to the a
lanche dynamics and disturbance. During the system ev
tion, avalanches distribute energies of unstable sites, and
turbances distribute energies of stable sites. Si
disturbances and avalanches distribute energies in a sim
way, it is expected to observe some type of self-similar str
ture in the energy distribution. We make statistics ofp(E)
when the system approaches its stationary state. We find
p(E) develops several major peaks. More interesting is
self-similar structure ofp(E). In Fig. 4, we show the energ
distribution for the casen54, Ē50.4286, and enlarge part
of the plot successively. A self-similar structure is obviou
Note that in Ref.@14#, energy distribution with several peak
was also reported, but no self-similar structure ofp(E) was
found there. In fact, the self-similar structure ofp(E) in the
present model is a natural result of the avalanche dynam
and the way the system is disturbed. The avalanches~energy
releasing of unstable sites! contribute to the major peaks
while the disturbances give rise to the fine self-similar str
ture. Clearly, there is an upper boundEu

1 for the releasing
energy, which should satisfyEu

1<11Eu
1/n. So one has tha

Eu
1<n/(n21). Here we use a superscript plus to indica

releasing energy. Looking at the distributionD(E1) for the
releasing energy~see Fig. 5, for example!, one sees a pro
nounced peak at a valueEm

1 , the most probable releasin
energy. This means that most energy portions in the ene
buffer have energy aroundEm

1/n. These portions of energy
when successively given back to system sites, will give r
to the major peaks inp(E). The positions of major peak
will be at Epk

5kEm
1/n, with integer k51,2,3, . . . ,n21.

SinceE,1 for stable sites, it is clear thatk must be less than
n, so that there are generallyn21 major peaks forp(E).
Given then21 major peaks inp(E), the disturbances will
produce smaller and smaller peaks in a similar way to h
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the avalanches produce the major peaks, hence the
similar structure ofp(E) emerges. In principle, the self
similar behavior ofp(E) should go to infinitely small scale
Due to limited statistics and numerical resolution, howev
we only show the self-similar structure with four levels
Fig. 4.

As the value of the most probable releasing energyEm
1 is

concerned, our numerical results suggest thatEm
152n/(2n

21), but unfortunately proof of this result is still lacking. I
Table I, we present some results forEm

1 andEpk
’s obtained

from numerical simulations. The corresponding values c
culated by Em

152n/(2n21) and Epk
5kEm

1/n are also
given. One can see that they agree very well. Note that
self-similar structure ofp(E) is insensitive to the initial en-
ergy configurations. We have tried to start simulations fro
the initial distributionp(E)5d(E2Ē), whereĒ is the sys-
tem energy, and found the same self-similarp(E) when the
system reached its critical stationary state.

VII. CONCLUSION

In conclusion, we have studied a random neighbor vers
of the EC sandpile model. The total energy of the system
a control parameter, which should be fine-tuned to obse
criticality. The critical energyEc depends on the number o
neighborsn for each site, but the critical exponents are ind
pendent ofn. This model is in the same universality class
the mean-field SOC sandpiles. The exponentst51.5 andg
51 are all the same as the mean-field results of SOC mod
In this paper, we employed a special way to disturb the s
tem when it is stable. The disturbance distributes stable
ergy (E,1) in a similar way to how the avalanche distrib
utes unstable energy (E1>1). In its critical stationary state
the model gives rise to a novel self-similar structure of t
energy distribution, which is due to the particular way t
system is disturbed.
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