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Universality and self-similarity of an energy-constrained sandpile model with random neighbors
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We study an energy-constrained sandpile model with random neighbors. The critical behavior of the model
is in the same universality class as the mean-field self-organized criticality sandpile. The critical Epergy
depends on the number of neighbarsor each site, but the various exponents are independent &f
self-similar structure witm—1 major peaks is developed for the energy distributid) when the system
approaches its stationary state. The avalanche dynamics contributes to the major peaks appEzaﬁing at
=2k/(2n—1) with k=1,2,... n—1, while the fine self-similar structure is a natural result of the way the
system is disturbedS1063-651X99)10307-9

PACS numbd(s): 05.65+b, 05.40—a, 05.70.Ln, 45.05:x

I. INTRODUCTION of energy from the boundary. When the stationary state of
the system is reached, the input and the dissipation balance
According to the original work of Balet al. on self- each other statistically, nevertheless there is still fluctuation
organized criticality[1], driven dissipative systems with of the total energy. In the EC model, however, there is nei-
many coupled degrees of freedom would evolve spontangher input nor dissipation of system energy, and the dynam-
ously into a critical state without fine tuning any control ics just redistributes energy among system elements. So the
parameter. The critical state of such a system is characterizddtal energy is fixed and thus is a control parameter. Numeri-
by scale-free distributions of dynamical activities. Batkal.  cal studies of the EC sandpile revealed that the model exhib-
demonstrated their idea with a cellular automaton model, théés power-law distribution of avalanche sizes at the critical
Bak-Tang-WiesenfeldTW) sandpile model, which later on energyE.=(0.6492+ 0.0002E,, [13], with the same expo-
drew much attention from physicists. Several variationsnents as that of the corresponding SOC sandpile. The scaling
[2—-4] of the BTW model and some other models, such as thavith the distance to the critical point, however, is different
forest-fire model5], the spring-block modefl6], the Bak- from that of the SOC model. For the EC sandpi(s)
Sneppen moddl7], etc., were proposed and were shown to~ (E.—E)~” with y=1.41*+0.03, while for the SOC sand-
display self-organized criticalitSOQ behaviors. There pile y=1. The authors of Ref13] concluded that the EC
have also been many effot8,9] to identify the mechanism sandpile and the corresponding SOC sandpile were in differ-
that leads to scale-free distributions in SOC models. Foent universality classes. This result, as stated in Rig],
sandpile models, scale invariance can be shown to follovppears somewhat puzzling. A natural question to ask is, are

from a local conservation lafl0], while in the nonconser- EC models necessarily in different universality classes from
vative stick-slip mode[6] the synchronization of system el- their corresponding SOC models?

ements plays an important rdl@]. As yet there seems to be
no unified picture'fc')r the appearance of .S_OC behavigr. Il. RANDOM NEIGHBOR EC SANDPILE MODEL
To many physicists, the idea of a critical point without

fine tuning of external parameters is very appealing because In this paper, we will study a continuous-energy sandpile

it opposes the standard picture of the equilibrium criticalmodel with random neighboréRN) and constrained total

phenomenon. Recently, several authid$,12 argued that energy. A continuous-energy SOC model defined on a square

in SOC systems the driving rate actually acts as the contrdhttice with stochastic driving was first introduced in Ref.

parameter that has to be fine-tuned to zero to observe critf14], and the critical energy was measured tokhe= (0.62

cality. For instance, the SOC models usually involve a sepa# 0.01)E,,. Here we consider a system with a total number

ration of time scales, namely, the slow time scale of drivingN of sites. To each of them a continuous non-negative vari-

and the fastinstan} time scale of relaxatiofavalanchg So  able, sayenergy is associated. If the enerdy, of sitei is

SOC models are actually defined at the driving rate of zeroless than some threshold val&s,, the sitei is said to be

To shed more light on the properties of SOC models, a sandstable. By properly choosing units, we can Egi=1. If E;

pile model with constrained total energy was propoisks]. =1, the site is unstable and will release all its energy. The

The energy-constraing&C) sandpile model differs from the energyE; of this unstable site will be evenly divided into

SOC sandpile model in the following way. In the SOC modelportions, where the integar>1 will be referred to as the

there are both input of energy into the system and dissipationumber of neighbors for each site. These portions of energy
will be at first temporally put into an energybtffer,” and
then will be given back to system sites one by one. Each

*Electronic address: zhangsd@bnu.edu.cn portion of energy will be given to a randomly chosen site,
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say sitej, from the system. So the energy of sjtbecomes 10° [
E;—E;+E;/n. If sitej also becomes unstable by receiving a F n=4
portion of energy, it will also release all its enerBy which
in turn will be divided and put into the buffer. The energy
portions in the buffer follow a “first in first out” rule, and
the process continues until the energy buffer becomes empty.
The successive energy releasing of unstable sites will be
called amavalanche and the size of an avalanche is defined
as the total number of releasing sites during the avalanche. In
this model, system sites are randomly chosen to receive en-
ergy portions from the buffer, and it is in this sense that the 10! : :
model is called a random-neighbor model. 10° 10 10°
When an avalanche has stopped, the system becomes N
stable; we disturb the system by randomly choosing a site, . .
dividing its energy evenly intm portions and putting the — FIG. 1. Average size of avalanches foLdlfferent system energy
energy portions into the buffer. Note that the way we disturt=- The curvesfrom top to bottom are for E=0.43,0.4286,0.425,
the system is different from the ways employed in R&8g], e_md 0.42, respectively. No;e that the curve o+ 0.4286 can be
namely, the random subtractiéRS) and the continuous sub- fitted to a power law(s)~N° very well with d;=0.50+0.01.

traction (CS). We will see later that the disturbance we em- . ]
ployed here will generate a self-similar structure in the enN faster than a power law and will never saturate. There is a

ergy distribution. value E. at which (s) has a very good power-law depen-

In the present model, the avalanche dynamics and th@ence orN, (s)~N, and this is just the critical energy of
disturbance both conserve the total energy of the system, $§€ system. By the procedure described above, we get that
the total energy never changes, and it is in this sense thec=0.4286=0.0001 andl;=0.50+0.01 forn=4. Note that
model is energy-constrained. We will UBEE to denote the this critical energy is different from that of the EC sandpile

t_otal energy of the system, so the average energy per site fined on a square lattice, whetg= (0.6492+ 0.0002F,

E For brevi . iE th We will 3]. For n=6, we getE.=0.4545-0.0001 andd;=0.50
- For brevity we just calle the system energy. We Will - g 51 The numerical results suggest that the critical energy

study the critical behavior of the model as the valu€ds s dependent om, but the exponend; is independent of.
continuously tuned.

<8>

107 |

IV. AVALANCHE-SIZE DISTRIBUTION

IIl. DETERMINATION OF THE CRITICAL ENERGY AT THE CRITICAL POINT

The critical energyE is the system energy at which the
system has a scale-free distribution of avalanche sizes. I&z
other words, at the critical energy there is no characteristi
avalanche size, and the size distribution is expected to be

power law. Let us define the quantiey=E_.—E as the dis-
tance from the critical point. At the critical poirt=0 one P(s,N)=s""G(s/NP). )
has a pure power-law distributid?(s) ~s~ . Near the criti-
cal point, a cutoff sizes.~ e, is expected to be present
due to the departure from the critical point. In numerical
simulations, one can only study systems of finite $iz®ue

to the finite-size effect, one expects a saturatios.ofvhen
€—0, in the forms,~e Y f(e/N""), and finally one has
the following form of avalanche distribution:

As expected from the above discussions, the avalanche-
e distribution follows a power law at the critical energy
%C. For finite N the numerical results can be well described
t?y the following form:

The scaling functionG(x) is a constant wherx<1 and
drops rapidly forx>1. In fact, Eq.(2) can be obtained from
Eq. (1) by taking the limite—0 with D=p/o.

In Fig. 2, we show the avalanche-size distribution at the
critical energy. By a data-collapse technique, we determined

s 10° 10t
P N)=s~ " . 1 107 F 10° §
(s,e,N)=s G(g“”f(e/Np)) @ 102} > 10}
E 108 | s 10" |
Here two scaling function§(x) and f(x) are introduced. & :g:: ;f 113?
G(x) is a constant fox<<1 and drops down rapidly fox o 10 | Z 102
>1; f(x) is a constant for large enough and follows a 107 | 10°
power lawf (x) ~x* for x<1. In the following sections we 10° b | 10* & — ~ )
will verify Eq. (1) with numerical results from different as- 10° 100 107 10° 1O e e e
pects, and will determine the exponentso, andp. s s/N

We determine the critical enerdy, by identifying a good

ower-law behavior ofs) with N. In Fig. 1, we show(s) as ) )
P . . {s) 9 — ws) point E=0.4286. The curvedfrom right to lef) are for N
a function ofN for different values off. WhenE is small, =10000,3000, and 1000, respectively. The statistics were made

(s) increases wittN slower than a power law and eventually oer 16 avalanches(b) A data collapse according to E€®), with
it saturates to some constant. For laEye(s) increases with  the exponents=1.5 andD=1.

FIG. 2. (a) Avalanche size distribution fon=4 at the critical
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FIG. 3. (a) Average size of avalanches scales vathE.— E for o 0002
different N. The curves (from top to bottom are for N m
=30000,10 000,3000, and 1000, respectivéy Data collapse ac- & °® | 00018
cording to Eq(5), with the exponenty=1 andp=0.5. The dashed 002 0.001
line shows a curvegx? for reference. oot | JL 0.0005 }J\w
0 | A — o A 4 e
the exponents=1.50+0.02 andD = 1.0+ 0.1. One can also o oo oe °§ 004 005 006 o oo °'°E°8 ooz oot

get a scaling relation between D, andd; by

FIG. 4. The energy distribution for the case-4, E=0.4286.
(s)(N)= j sP(s,N)ds~ f sl_TG(s/ND)dsoc NP(2—7) The statistics were made oyer_emalanches and the bin s_ize is set
to be 10 4. To see the self-similar structure, parts of the figure were
3 enlarged successivel{g)— (b)— (c)— (d).

So one has thad;=D(2— 7). The numerical results fdd,  ygnents extracted from the data collapse qarel.0 andp
7, andd; agree well with this scaling relation. Again we find _ 5 g9 gne has=(2— 7)/y=0.5. Note that the relation
that exponent®, 7, andd; for n=6 are the same as for  p— /4 is consistently satisfied by the numerical results.

=4 within numerical errors. _ One can also get thés)<N”? by taking the limite— 0 in
The avalanche exponemthere is the same as the mean- Eq. (5), and get the relatiod;=pvy. The numerical results

field result for various SOC mode[42,15. In the present 5155 agree well with this relation. Also note that the expo-
model, the avalanche can be actually mapped to a rando%msy and p for n=6 are the same as that fo=4 al-
walk problem[15] or to a branching procegd6]. In both 4,01 the critical energies are different for the two cases.
cases, the corresponding exponent can be shown to be 1.5. So, for the EC RN sandpile model, not only the avalanche
At the critical point, the branching rate is equal to unity. Forexponentr=1.5 but also the scaling exponept=1 is the

the present model, the branching rate can be calculated bysyme a5 that of the mean-field SOC model. This situation is

different from the case studied in R¢L3], where the expo-

1
fb=nJ p(E)dE, (4)  nenty for the EC model is different from that of the SOC
1—(E*)/n model.
wherep(E) is the energy distribution function af& ") is 35
the average releasing energy of unstable sites. We have mad :
some calculations on,. At the critical energyE;, we did 30 [
get thatr,=1 within numerical errors. This verifies that the :
critical energy was consistently determined. 25 |
V. SCALING WITH THE DISTANCE & 20
TO THE CRITICAL POINT a C
15 11 12 13
To see if the EC model is in the same universality class as i
its SOC counterpart, one needs to investigate the scaling 10 ¢
with the distance to the critical point. Calculating the average r
size of avalanches by using E(), one gets the following a
scaling form: 0 o~ N~
c 1 105 11 115 12 125 13 135
~e Y J—
<S> € F(Np), (5) E+

) P . . FIG. 5. The releasing energy distribution for the case4, E
with y=(2—17)/o and F(x)=f*""(x), which is the (2 _( 4286. The statistics were made ovex 8 unstable releasing
— m)th power off(x). F(x) follows a power lawF(x)~x” events and the bin size is set to b& 50~ 4. The pronounced peak
for x<1 and becomes constant fer-1. In Fig. 3 we show in the figure is aE,, = 1.1425. The inset is the same curve replotted
(s) as a function ofe=E;—E for differentN. A very good  with D(E*) in logarithmic scale, which shows that the rangdEdf
data collapse according to E€) is also obtained. The ex- does not exceed the upper boumdn—1)=4/3~1.33.
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TABLE I. The most probable releasing energy, and the positions of the major peaEgk’s in the
energy distributiorp(E). For eachn the first line gives the numerical results, while the numbers in paren-
theses are calculated i}, =2n/(2n—1) andEpk:kEr;/n:Zk/(Zn—l) with integerk=1,2,3 ... ,n—1.

n E; Ep, Ep, Ep, Ep, Ep,

4 1.143:0.001  0.285:0.001 0.57%#0.001  0.86-0.01 No No
(1.142857) (0.285714) (0.571429) (0.857143) No No

5 1.11+0.01 0.22:0.01 0.44-0.01 0.67-0.01 0.89-0.01 No
(1.111111) (0.222222) (0.444444) (0.666667) (0.888889) No

6 1.090-0.001  0.18%0.001 0.3630.001 0.54%0.001 0.72%#0.001  0.91-0.01

(1.090909) (0.181818) (0.363636) (0.545455) (0.727273)  (0.909091)

VI. ENERGY DISTRIBUTION AT THE CRITICAL POINT the avalanches produce the major peaks, hence the self-
similar structure ofp(E) emerges. In principle, the self-
similar behavior ofp(E) should go to infinitely small scale.

system in its critical stationary state. Le(E)dE be the limited S d ical lution. h
robability that a site has energy in the interyal E+ dE] Due to limited statistics and numerical resolution, however,
b " we only show the self-similar structure with four levels in

In numerical simulations, we start from random energy con-

) ) ) ] ST Fig. 4.
figurations with a uniform distributiomp(E)=1/(2E), 0 As the value of the most probable releasing eneggjyis

<E<ZE, and let the system evolve according to the avagoncerned, our numerical results suggest #at=2n/(2n
lanche dynamics and disturbance. During the system evolu- 1) pyt unfortunately proof of this result is still lacking. In
tion, avalanches distribute energies of unstable sites, and digypje | we present some results 8, andE, 's obtained

! k

turbances  distribute ~ energies of stable sites. Sir]Cirom numerical simulations. The corresponding values cal-
disturbances and avalanches distribute energies in a similar + : P " 9
culated by E,=2n/(2n—1) and E, =kE;/n are also

way, it is expected to observe some type of self-similar struc-
ture in the energy distribution. We make statisticspgE) ~ 9iven. One can see that they agree very well. Note that the
when the system approaches its stationary state. We find thgelf-similar structure op(E) is insensitive to the initial en-
p(E) develops several major peaks. More interesting is th&rdy configurations. We have tried to start simulations from
self-similar structure op(E). In Fig. 4, we show the energy the initial distributionp(E) = 6(E—E), whereE is the sys-
distribution for the case=4, E=0.4286, and enlarge parts tem energy, and found the same self-simp¢E) when the

of the plot successively. A self-similar structure is obvious.System reached its critical stationary state.

Note that in Ref[14], energy distribution with several peaks
was also reported, but no self-similar structurgpfE) was

found there. In fact, the self-similar structurem(fE) in the | conclusion, we have studied a random neighbor version
present model is a natural result of the avalanche dynamicss the EC sandpile model. The total energy of the system is
and the way the system is disturbed. The avalant&®srgy 5 control parameter, which should be fine-tuned to observe
releasing of unstable sitesontribute to the major peaks, criticality. The critical energyE, depends on the number of
while the disturbances give rise to the fine self-similar StrUC‘neighborsn for each site, but the critical exponents are inde-
ture. Clearly, there is an upper boufiq for the releasing pendent of. This model is in the same universality class as
energy, which should satisf, <1+E_/n. So one has that the mean-field SOC sandpiles. The exponentsl.5 andy
Ejsn/(n— 1). Here we use a superscript plus to indicate=1 are all the same as the mean-field results of SOC models.
releasing energy. Looking at the distributi@{E™) for the  In this paper, we employed a special way to disturb the sys-
releasing energysee Fig. 5, for exampleone sees a pro- tem when it is stable. The disturbance distributes stable en-
nounced peak at a valug,,, the most probable releasing ergy (E<1) in a similar way to how the avalanche distrib-
energy. This means that most energy portions in the energytes unstable energye("=1). In its critical stationary state
buffer have energy arourid./n. These portions of energy, the model gives rise to a novel self-similar structure of the
when successively given back to system sites, will give riseenergy distribution, which is due to the particular way the
to the major peaks ip(E). The positions of major peaks System is disturbed.

will be at E, =kE,/n, with integerk=1,2,3...n—1.
SinceE<1 for stable sites, it is clear thietmust be less than
n, so that there are generally—1 major peaks fop(E). This work was supported by the National Nature Science
Given then—1 major peaks im(E), the disturbances will Foundation of China, the Education Ministry of the State
produce smaller and smaller peaks in a similar way to howCouncil, through the Foundation of Doctoral Training.

In this section we study the energy distribution of the

VIl. CONCLUSION
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